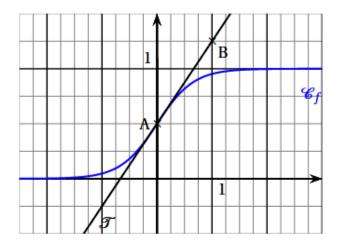
Exercice 1

On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = \frac{1}{1 + \mathrm{e}^{-3x}}$$

On note \mathscr{C}_f sa courbe représentative dans un repère orthogonal du plan. On nomme A le point de coordonnées $\left(0; \frac{1}{2}\right)$ et B le point de coordonnées $\left(1; \frac{5}{4}\right)$. On a tracé ci-dessous la courbe \mathscr{C}_f et \mathscr{T} la tangente à la courbe \mathscr{C}_f au point d'abscisse 0.



Partie A : lectures graphiques

Dans cette partie, les résultats seront obtenus par lecture graphique. Aucune justification n'est demandée.

- 1. Déterminer l'équation réduite de la tangente \mathcal{T} .
- 2. Donner les intervalles sur lesquels la fonction f semble convexe ou concave.

Partie B : étude de la fonction

- On admet que la fonction *f* est dérivable sur ℝ.
 Déterminer l'expression de sa fonction dérivée *f*'.
- **2.** Justifier que la fonction f est strictement croissante sur \mathbb{R} .
- **3. a.** Déterminer la limite en $+\infty$ de la fonction f.
 - **b.** Déterminer la limite en $-\infty$ de la fonction [.
- **4.** Déterminer la valeur exacte de la solution α de l'équation f(x) = 0,99.

Partie C : Tangente et convexité

 Déterminer par le calcul une équation de la tangente 𝒯 à la courbe 𝒪_f au point d'abscisse 0. On admet que la fonction *f* est deux fois dérivable sur ℝ.
 On note *f*″ la fonction dérivée seconde de la fonction *f*.
 On admet que *f*″ est définie sur ℝ par :

$$f''(x) = \frac{9e^{-3x}(e^{-3x}-1)}{(1+e^{-3x})^3}.$$

- **2.** Étudier le signe de la fonction f'' sur \mathbb{R} .
- **3. a.** Indiquer, en justifiant, sur quel(s) intervalle(s) la fonction *f* est convexe.
 - **b.** Que représente le point A pour la courbe \mathscr{C}_f ?
 - c. En déduire la position relative de la tangente \mathcal{T} et de la courbe \mathcal{C}_f . Justifier la réponse.

Partie A

On considère la fonction f définie sur l'ensemble $]0; +\infty[$ par

$$f(x) = 1 + x^2 - 2x^2 \ln(x).$$

On admet que f est dérivable sur l'intervalle et on note f' sa fonction dérivée

- 1. Justifier que $\lim_{x\to 0} f(x) = 1$ et, en remarquant que $f(x) = 1 + x^2[1 2\ln(x)]$, justifier que $\lim_{x\to +\infty} f(x) = -\infty$.
- **2.** Montrer que pour tout réel *x* de l'intervalle $]0; +\infty[, f'(x) = -4x \ln(x)]$.
- **3.** Étudier le signe de f'(x) sur l'intervalle $]0; +\infty[$, puis dresser le tableau de variations de la fonction sur l'intervalle $]0; +\infty[$.
- Démontrer que l'équation f(x) = 0 admet une unique solution α dans l'intervalle [1; +∞[et que α ∈ [1; e].

On admet dans la suite de l'exercice, que l'équation f(x) = 0 n'admet pas de solution sur l'intervalle]0; 1].

5. On donne la fonction ci-dessous écrit en Python. L'instruction *from lycee import* * permet d'accéder à la fonction ln.

Il écrit dans la console d'exécution :

>>> dichotomie(1)

Parmi les quatre propositions ci-dessous, recopier celle affichée par l'instruction précédente? Justifier votre réponse (on pourra procéder par élimination).

Proposition A :	(1.75, 1.903125000000002)
Proposition B :	(1.85, 1.903125000000002)
Proposition C :	(2.75, 2.903125000000002)
Proposition D :	(2.85, 2.903125000000002)

Partie B

On considère la fonction g définie sur l'intervalle $]0; +\infty[$, par

$$g(x)=\frac{\ln(x)}{1+x^2}.$$

On admet que g est dérivable sur l'intervalle $]0; +\infty[$ et on note g' sa fonction dérivée. On note \mathscr{C}_g la courbe représentative de la fonction g dans le plan rapporté à un repère $(0; \vec{i}, \vec{j})$.

- 1. Démontrer que pour tout réel x de l'intervalle]0; $+\infty[, g'(x) = \frac{f(x)}{x(1+x^2)^2}$.
- **2.** Démontrer que la fonction *g* admet un maximum en $x = \alpha$

On admet que $g(\alpha) = \frac{1}{2\alpha^2}$.

3. On note T_1 la tangente à \mathscr{C}_g au point d'abscisse 1 et on note T_α la tangente à \mathscr{C}_g au point d'abscisse α .

Déterminer, en fonction de α , les coordonnées du point d'intersection des droites T_1 et T_{α} .